MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. SAE-AISI 1086 Steel

Grade 16 titanium belongs to the titanium alloys classification, while SAE-AISI 1086 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is SAE-AISI 1086 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 23
11
Fatigue Strength, MPa 240
300 to 360
Poisson's Ratio 0.32
0.29
Reduction in Area, % 34
28 to 45
Shear Modulus, GPa 38
72
Shear Strength, MPa 250
450 to 520
Tensile Strength: Ultimate (UTS), MPa 400
760 to 870
Tensile Strength: Yield (Proof), MPa 340
480 to 580

Thermal Properties

Latent Heat of Fusion, J/g 420
240
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 22
50
Thermal Expansion, µm/m-K 9.2
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
8.1

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 36
1.4
Embodied Energy, MJ/kg 600
19
Embodied Water, L/kg 230
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
79 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 550
610 to 890
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 25
27 to 31
Strength to Weight: Bending, points 27
24 to 26
Thermal Diffusivity, mm2/s 8.9
14
Thermal Shock Resistance, points 29
26 to 30

Alloy Composition

Carbon (C), % 0 to 0.080
0.8 to 0.93
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
98.5 to 98.9
Manganese (Mn), % 0
0.3 to 0.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 98.8 to 99.96
0
Residuals, % 0 to 0.4
0