MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. C17510 Copper

Grade 16 titanium belongs to the titanium alloys classification, while C17510 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is C17510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 23
5.4 to 37
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 38
44
Shear Strength, MPa 250
210 to 500
Tensile Strength: Ultimate (UTS), MPa 400
310 to 860
Tensile Strength: Yield (Proof), MPa 340
120 to 750

Thermal Properties

Latent Heat of Fusion, J/g 420
220
Maximum Temperature: Mechanical, °C 320
220
Melting Completion (Liquidus), °C 1660
1070
Melting Onset (Solidus), °C 1610
1030
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 22
210
Thermal Expansion, µm/m-K 9.2
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
22 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
23 to 54

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 36
4.2
Embodied Energy, MJ/kg 600
65
Embodied Water, L/kg 230
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
39 to 92
Resilience: Unit (Modulus of Resilience), kJ/m3 550
64 to 2410
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 25
9.7 to 27
Strength to Weight: Bending, points 27
11 to 23
Thermal Diffusivity, mm2/s 8.9
60
Thermal Shock Resistance, points 29
11 to 30

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.2 to 0.6
Carbon (C), % 0 to 0.080
0
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0
95.9 to 98.4
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.1
Nickel (Ni), % 0
1.4 to 2.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.2
Titanium (Ti), % 98.8 to 99.96
0
Residuals, % 0
0 to 0.5