MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. C22600 Bronze

Grade 16 titanium belongs to the titanium alloys classification, while C22600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is C22600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 23
2.5 to 33
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 38
42
Shear Strength, MPa 250
220 to 320
Tensile Strength: Ultimate (UTS), MPa 400
330 to 570
Tensile Strength: Yield (Proof), MPa 340
270 to 490

Thermal Properties

Latent Heat of Fusion, J/g 420
200
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
1040
Melting Onset (Solidus), °C 1610
1000
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 22
170
Thermal Expansion, µm/m-K 9.2
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
40
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
42

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.7
Embodied Carbon, kg CO2/kg material 36
2.6
Embodied Energy, MJ/kg 600
42
Embodied Water, L/kg 230
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
14 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 550
330 to 1070
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 25
11 to 18
Strength to Weight: Bending, points 27
12 to 18
Thermal Diffusivity, mm2/s 8.9
52
Thermal Shock Resistance, points 29
11 to 19

Alloy Composition

Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
86 to 89
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Titanium (Ti), % 98.8 to 99.96
0
Zinc (Zn), % 0
10.7 to 14
Residuals, % 0
0 to 0.2