MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. C38500 Bronze

Grade 16 titanium belongs to the titanium alloys classification, while C38500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is C38500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 23
17
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 38
37
Shear Strength, MPa 250
230
Tensile Strength: Ultimate (UTS), MPa 400
370
Tensile Strength: Yield (Proof), MPa 340
130

Thermal Properties

Latent Heat of Fusion, J/g 420
160
Maximum Temperature: Mechanical, °C 320
110
Melting Completion (Liquidus), °C 1660
890
Melting Onset (Solidus), °C 1610
880
Specific Heat Capacity, J/kg-K 540
380
Thermal Conductivity, W/m-K 22
120
Thermal Expansion, µm/m-K 9.2
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
28
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
31

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 36
2.6
Embodied Energy, MJ/kg 600
45
Embodied Water, L/kg 230
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
48
Resilience: Unit (Modulus of Resilience), kJ/m3 550
78
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 25
13
Strength to Weight: Bending, points 27
14
Thermal Diffusivity, mm2/s 8.9
40
Thermal Shock Resistance, points 29
12

Alloy Composition

Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
55 to 59
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.35
Lead (Pb), % 0
2.5 to 3.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Titanium (Ti), % 98.8 to 99.96
0
Zinc (Zn), % 0
36.7 to 42.5
Residuals, % 0
0 to 0.5