MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. N07750 Nickel

Grade 16 titanium belongs to the titanium alloys classification, while N07750 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is N07750 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 23
25
Fatigue Strength, MPa 240
520
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 38
73
Shear Strength, MPa 250
770
Tensile Strength: Ultimate (UTS), MPa 400
1200
Tensile Strength: Yield (Proof), MPa 340
820

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 320
960
Melting Completion (Liquidus), °C 1660
1430
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
460
Thermal Conductivity, W/m-K 22
13
Thermal Expansion, µm/m-K 9.2
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
1.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.4
Embodied Carbon, kg CO2/kg material 36
10
Embodied Energy, MJ/kg 600
150
Embodied Water, L/kg 230
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
270
Resilience: Unit (Modulus of Resilience), kJ/m3 550
1770
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 25
40
Strength to Weight: Bending, points 27
30
Thermal Diffusivity, mm2/s 8.9
3.3
Thermal Shock Resistance, points 29
36

Alloy Composition

Aluminum (Al), % 0
0.4 to 1.0
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
5.0 to 9.0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
70 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 98.8 to 99.96
2.3 to 2.8
Residuals, % 0 to 0.4
0