MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. S41425 Stainless Steel

Grade 16 titanium belongs to the titanium alloys classification, while S41425 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is S41425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
17
Fatigue Strength, MPa 240
450
Poisson's Ratio 0.32
0.28
Reduction in Area, % 34
51
Shear Modulus, GPa 38
77
Shear Strength, MPa 250
570
Tensile Strength: Ultimate (UTS), MPa 400
920
Tensile Strength: Yield (Proof), MPa 340
750

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
810
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 22
16
Thermal Expansion, µm/m-K 9.2
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
2.7

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 36
2.9
Embodied Energy, MJ/kg 600
40
Embodied Water, L/kg 230
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
150
Resilience: Unit (Modulus of Resilience), kJ/m3 550
1420
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 25
33
Strength to Weight: Bending, points 27
27
Thermal Diffusivity, mm2/s 8.9
4.4
Thermal Shock Resistance, points 29
33

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
12 to 15
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
74 to 81.9
Manganese (Mn), % 0
0.5 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0
4.0 to 7.0
Nitrogen (N), % 0 to 0.030
0.060 to 0.12
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 98.8 to 99.96
0
Residuals, % 0 to 0.4
0