MakeItFrom.com
Menu (ESC)

Grade 17 Titanium vs. 1100A Aluminum

Grade 17 titanium belongs to the titanium alloys classification, while 1100A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 17 titanium and the bottom bar is 1100A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 27
4.5 to 34
Fatigue Strength, MPa 160
35 to 74
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 38
26
Shear Strength, MPa 180
59 to 99
Tensile Strength: Ultimate (UTS), MPa 270
89 to 170
Tensile Strength: Yield (Proof), MPa 210
29 to 150

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
640
Melting Onset (Solidus), °C 1610
640
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 23
230
Thermal Expansion, µm/m-K 8.7
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
60
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
200

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 36
8.2
Embodied Energy, MJ/kg 600
150
Embodied Water, L/kg 230
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
6.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 220
5.9 to 150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 17
9.1 to 17
Strength to Weight: Bending, points 21
16 to 25
Thermal Diffusivity, mm2/s 9.3
93
Thermal Shock Resistance, points 21
4.0 to 7.6

Alloy Composition

Aluminum (Al), % 0
99 to 100
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0.050 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 1.0
Titanium (Ti), % 99.015 to 99.96
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15