MakeItFrom.com
Menu (ESC)

Grade 17 Titanium vs. 5019 Aluminum

Grade 17 titanium belongs to the titanium alloys classification, while 5019 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 17 titanium and the bottom bar is 5019 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 27
2.2 to 18
Fatigue Strength, MPa 160
100 to 160
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 38
26
Shear Strength, MPa 180
170 to 210
Tensile Strength: Ultimate (UTS), MPa 270
280 to 360
Tensile Strength: Yield (Proof), MPa 210
120 to 300

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
180
Melting Completion (Liquidus), °C 1660
640
Melting Onset (Solidus), °C 1610
540
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 23
130
Thermal Expansion, µm/m-K 8.7
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
29
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
98

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 36
9.0
Embodied Energy, MJ/kg 600
150
Embodied Water, L/kg 230
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
7.6 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 220
110 to 650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
51
Strength to Weight: Axial, points 17
29 to 38
Strength to Weight: Bending, points 21
35 to 42
Thermal Diffusivity, mm2/s 9.3
52
Thermal Shock Resistance, points 21
13 to 16

Alloy Composition

Aluminum (Al), % 0
91.5 to 95.3
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.5
Magnesium (Mg), % 0
4.5 to 5.6
Manganese (Mn), % 0
0.1 to 0.6
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.4
Titanium (Ti), % 99.015 to 99.96
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15