MakeItFrom.com
Menu (ESC)

Grade 17 Titanium vs. 6463 Aluminum

Grade 17 titanium belongs to the titanium alloys classification, while 6463 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 17 titanium and the bottom bar is 6463 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 27
9.0 to 17
Fatigue Strength, MPa 160
45 to 76
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 38
26
Shear Strength, MPa 180
86 to 150
Tensile Strength: Ultimate (UTS), MPa 270
140 to 230
Tensile Strength: Yield (Proof), MPa 210
82 to 200

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
160
Melting Completion (Liquidus), °C 1660
660
Melting Onset (Solidus), °C 1610
620
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 23
190 to 210
Thermal Expansion, µm/m-K 8.7
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
50 to 55
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
170 to 180

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 36
8.3
Embodied Energy, MJ/kg 600
150
Embodied Water, L/kg 230
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
17 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 220
50 to 300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 17
14 to 24
Strength to Weight: Bending, points 21
22 to 31
Thermal Diffusivity, mm2/s 9.3
79 to 86
Thermal Shock Resistance, points 21
6.3 to 10

Alloy Composition

Aluminum (Al), % 0
97.9 to 99.4
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.15
Magnesium (Mg), % 0
0.45 to 0.9
Manganese (Mn), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0.2 to 0.6
Titanium (Ti), % 99.015 to 99.96
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15