MakeItFrom.com
Menu (ESC)

Grade 17 Titanium vs. C49300 Brass

Grade 17 titanium belongs to the titanium alloys classification, while C49300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 17 titanium and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 27
4.5 to 20
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 38
40
Shear Strength, MPa 180
270 to 290
Tensile Strength: Ultimate (UTS), MPa 270
430 to 520
Tensile Strength: Yield (Proof), MPa 210
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 420
170
Maximum Temperature: Mechanical, °C 320
120
Melting Completion (Liquidus), °C 1660
880
Melting Onset (Solidus), °C 1610
840
Specific Heat Capacity, J/kg-K 540
380
Thermal Conductivity, W/m-K 23
88
Thermal Expansion, µm/m-K 8.7
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
15
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
17

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 36
3.0
Embodied Energy, MJ/kg 600
50
Embodied Water, L/kg 230
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 220
220 to 800
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 17
15 to 18
Strength to Weight: Bending, points 21
16 to 18
Thermal Diffusivity, mm2/s 9.3
29
Thermal Shock Resistance, points 21
14 to 18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
58 to 62
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 0.030
Nickel (Ni), % 0
0 to 1.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0
1.0 to 1.8
Titanium (Ti), % 99.015 to 99.96
0
Zinc (Zn), % 0
30.6 to 40.5
Residuals, % 0
0 to 0.5