MakeItFrom.com
Menu (ESC)

Grade 17 Titanium vs. C60800 Bronze

Grade 17 titanium belongs to the titanium alloys classification, while C60800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 17 titanium and the bottom bar is C60800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 27
55
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 38
46
Shear Strength, MPa 180
290
Tensile Strength: Ultimate (UTS), MPa 270
390
Tensile Strength: Yield (Proof), MPa 210
150

Thermal Properties

Latent Heat of Fusion, J/g 420
220
Maximum Temperature: Mechanical, °C 320
210
Melting Completion (Liquidus), °C 1660
1060
Melting Onset (Solidus), °C 1610
1050
Specific Heat Capacity, J/kg-K 540
410
Thermal Conductivity, W/m-K 23
80
Thermal Expansion, µm/m-K 8.7
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
17
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
18

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.6
Embodied Carbon, kg CO2/kg material 36
2.9
Embodied Energy, MJ/kg 600
48
Embodied Water, L/kg 230
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
170
Resilience: Unit (Modulus of Resilience), kJ/m3 220
94
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 17
13
Strength to Weight: Bending, points 21
14
Thermal Diffusivity, mm2/s 9.3
23
Thermal Shock Resistance, points 21
14

Alloy Composition

Aluminum (Al), % 0
5.0 to 6.5
Arsenic (As), % 0
0.020 to 0.35
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
92.5 to 95
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Palladium (Pd), % 0.040 to 0.080
0
Titanium (Ti), % 99.015 to 99.96
0
Residuals, % 0
0 to 0.5