MakeItFrom.com
Menu (ESC)

Grade 17 Titanium vs. C69300 Brass

Grade 17 titanium belongs to the titanium alloys classification, while C69300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 17 titanium and the bottom bar is C69300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 27
8.5 to 15
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 38
41
Shear Strength, MPa 180
330 to 370
Tensile Strength: Ultimate (UTS), MPa 270
550 to 630
Tensile Strength: Yield (Proof), MPa 210
300 to 390

Thermal Properties

Latent Heat of Fusion, J/g 420
240
Maximum Temperature: Mechanical, °C 320
160
Melting Completion (Liquidus), °C 1660
880
Melting Onset (Solidus), °C 1610
860
Specific Heat Capacity, J/kg-K 540
400
Thermal Conductivity, W/m-K 23
38
Thermal Expansion, µm/m-K 8.7
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
8.8

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.2
Embodied Carbon, kg CO2/kg material 36
2.7
Embodied Energy, MJ/kg 600
45
Embodied Water, L/kg 230
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
47 to 70
Resilience: Unit (Modulus of Resilience), kJ/m3 220
400 to 700
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 17
19 to 21
Strength to Weight: Bending, points 21
18 to 20
Thermal Diffusivity, mm2/s 9.3
12
Thermal Shock Resistance, points 21
19 to 22

Alloy Composition

Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
73 to 77
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0.040 to 0.15
Silicon (Si), % 0
2.7 to 3.4
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 99.015 to 99.96
0
Zinc (Zn), % 0
18.4 to 24.3
Residuals, % 0
0 to 0.5