MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. 295.0 Aluminum

Grade 18 titanium belongs to the titanium alloys classification, while 295.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is 295.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 11 to 17
2.0 to 7.2
Fatigue Strength, MPa 330 to 480
44 to 55
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Shear Strength, MPa 420 to 590
180 to 230
Tensile Strength: Ultimate (UTS), MPa 690 to 980
230 to 280
Tensile Strength: Yield (Proof), MPa 540 to 810
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1640
640
Melting Onset (Solidus), °C 1590
530
Specific Heat Capacity, J/kg-K 550
880
Thermal Conductivity, W/m-K 8.3
140
Thermal Expansion, µm/m-K 9.9
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
100

Otherwise Unclassified Properties

Density, g/cm3 4.5
3.0
Embodied Carbon, kg CO2/kg material 41
7.9
Embodied Energy, MJ/kg 670
150
Embodied Water, L/kg 270
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
5.2 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
77 to 340
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
46
Strength to Weight: Axial, points 43 to 61
21 to 26
Strength to Weight: Bending, points 39 to 49
27 to 32
Thermal Diffusivity, mm2/s 3.4
54
Thermal Shock Resistance, points 47 to 67
9.8 to 12

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
91.4 to 95.3
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
4.0 to 5.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 1.0
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0
0 to 0.35
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0.7 to 1.5
Titanium (Ti), % 92.5 to 95.5
0 to 0.25
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15