MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. 6182 Aluminum

Grade 18 titanium belongs to the titanium alloys classification, while 6182 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 11 to 17
6.8 to 13
Fatigue Strength, MPa 330 to 480
63 to 99
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 420 to 590
140 to 190
Tensile Strength: Ultimate (UTS), MPa 690 to 980
230 to 320
Tensile Strength: Yield (Proof), MPa 540 to 810
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 410
410
Maximum Temperature: Mechanical, °C 330
190
Melting Completion (Liquidus), °C 1640
640
Melting Onset (Solidus), °C 1590
600
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 8.3
160
Thermal Expansion, µm/m-K 9.9
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
130

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 41
8.4
Embodied Energy, MJ/kg 670
150
Embodied Water, L/kg 270
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
110 to 520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 43 to 61
23 to 32
Strength to Weight: Bending, points 39 to 49
30 to 38
Thermal Diffusivity, mm2/s 3.4
65
Thermal Shock Resistance, points 47 to 67
10 to 14

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
95 to 97.9
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.2
Manganese (Mn), % 0
0.5 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0.9 to 1.3
Titanium (Ti), % 92.5 to 95.5
0 to 0.1
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.15