MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. AISI 204 Stainless Steel

Grade 18 titanium belongs to the titanium alloys classification, while AISI 204 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is AISI 204 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
23 to 39
Fatigue Strength, MPa 330 to 480
320 to 720
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 420 to 590
500 to 700
Tensile Strength: Ultimate (UTS), MPa 690 to 980
730 to 1100
Tensile Strength: Yield (Proof), MPa 540 to 810
380 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
850
Melting Completion (Liquidus), °C 1640
1410
Melting Onset (Solidus), °C 1590
1370
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.3
15
Thermal Expansion, µm/m-K 9.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.9

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 41
2.4
Embodied Energy, MJ/kg 670
35
Embodied Water, L/kg 270
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
240 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
360 to 2940
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 43 to 61
27 to 40
Strength to Weight: Bending, points 39 to 49
24 to 31
Thermal Diffusivity, mm2/s 3.4
4.1
Thermal Shock Resistance, points 47 to 67
16 to 24

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
15 to 17
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
69.6 to 76.4
Manganese (Mn), % 0
7.0 to 9.0
Nickel (Ni), % 0
1.5 to 3.0
Nitrogen (N), % 0 to 0.030
0.15 to 0.3
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0

Comparable Variants