MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. AISI 420 Stainless Steel

Grade 18 titanium belongs to the titanium alloys classification, while AISI 420 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is AISI 420 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11 to 17
8.0 to 15
Fatigue Strength, MPa 330 to 480
220 to 670
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 420 to 590
420 to 1010
Tensile Strength: Ultimate (UTS), MPa 690 to 980
690 to 1720
Tensile Strength: Yield (Proof), MPa 540 to 810
380 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
620
Melting Completion (Liquidus), °C 1640
1510
Melting Onset (Solidus), °C 1590
1450
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.3
27
Thermal Expansion, µm/m-K 9.9
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 41
2.0
Embodied Energy, MJ/kg 670
28
Embodied Water, L/kg 270
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
88 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
380 to 4410
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 43 to 61
25 to 62
Strength to Weight: Bending, points 39 to 49
22 to 41
Thermal Diffusivity, mm2/s 3.4
7.3
Thermal Shock Resistance, points 47 to 67
25 to 62

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0.15 to 0.4
Chromium (Cr), % 0
12 to 14
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
82.3 to 87.9
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.75
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0

Comparable Variants