MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. AISI 440B Stainless Steel

Grade 18 titanium belongs to the titanium alloys classification, while AISI 440B stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is AISI 440B stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
3.0 to 18
Fatigue Strength, MPa 330 to 480
260 to 850
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 420 to 590
460 to 1110
Tensile Strength: Ultimate (UTS), MPa 690 to 980
740 to 1930
Tensile Strength: Yield (Proof), MPa 540 to 810
430 to 1860

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
870
Melting Completion (Liquidus), °C 1640
1480
Melting Onset (Solidus), °C 1590
1370
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.3
23
Thermal Expansion, µm/m-K 9.9
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.9

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 41
2.2
Embodied Energy, MJ/kg 670
31
Embodied Water, L/kg 270
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
57 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 43 to 61
27 to 70
Strength to Weight: Bending, points 39 to 49
24 to 45
Thermal Diffusivity, mm2/s 3.4
6.1
Thermal Shock Resistance, points 47 to 67
27 to 70

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0.75 to 1.0
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
78.2 to 83.3
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0

Comparable Variants