MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. EN 1.0213 Steel

Grade 18 titanium belongs to the titanium alloys classification, while EN 1.0213 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is EN 1.0213 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11 to 17
12 to 25
Fatigue Strength, MPa 330 to 480
160 to 240
Poisson's Ratio 0.32
0.29
Reduction in Area, % 23
72 to 80
Shear Modulus, GPa 40
73
Shear Strength, MPa 420 to 590
230 to 270
Tensile Strength: Ultimate (UTS), MPa 690 to 980
320 to 430
Tensile Strength: Yield (Proof), MPa 540 to 810
220 to 330

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 330
400
Melting Completion (Liquidus), °C 1640
1470
Melting Onset (Solidus), °C 1590
1430
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.3
53
Thermal Expansion, µm/m-K 9.9
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
7.9

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 41
1.4
Embodied Energy, MJ/kg 670
18
Embodied Water, L/kg 270
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
33 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
120 to 300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 61
11 to 15
Strength to Weight: Bending, points 39 to 49
13 to 16
Thermal Diffusivity, mm2/s 3.4
14
Thermal Shock Resistance, points 47 to 67
10 to 14

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0.020 to 0.060
Carbon (C), % 0 to 0.080
0.060 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
99.245 to 99.67
Manganese (Mn), % 0
0.25 to 0.45
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0