MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. EN 1.4104 Stainless Steel

Grade 18 titanium belongs to the titanium alloys classification, while EN 1.4104 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is EN 1.4104 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
11 to 23
Fatigue Strength, MPa 330 to 480
230 to 310
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 420 to 590
400 to 450
Tensile Strength: Ultimate (UTS), MPa 690 to 980
630 to 750
Tensile Strength: Yield (Proof), MPa 540 to 810
350 to 560

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
860
Melting Completion (Liquidus), °C 1640
1440
Melting Onset (Solidus), °C 1590
1390
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.3
25
Thermal Expansion, µm/m-K 9.9
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.9

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 41
2.2
Embodied Energy, MJ/kg 670
30
Embodied Water, L/kg 270
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
77 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
310 to 800
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 43 to 61
23 to 27
Strength to Weight: Bending, points 39 to 49
21 to 24
Thermal Diffusivity, mm2/s 3.4
6.7
Thermal Shock Resistance, points 47 to 67
22 to 27

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0.1 to 0.17
Chromium (Cr), % 0
15.5 to 17.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
78.8 to 84.1
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0.2 to 0.6
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0

Comparable Variants