MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. EN 1.4110 Stainless Steel

Grade 18 titanium belongs to the titanium alloys classification, while EN 1.4110 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is EN 1.4110 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11 to 17
11 to 14
Fatigue Strength, MPa 330 to 480
250 to 730
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 420 to 590
470 to 1030
Tensile Strength: Ultimate (UTS), MPa 690 to 980
770 to 1720
Tensile Strength: Yield (Proof), MPa 540 to 810
430 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
790
Melting Completion (Liquidus), °C 1640
1440
Melting Onset (Solidus), °C 1590
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.3
30
Thermal Expansion, µm/m-K 9.9
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.2

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 41
2.3
Embodied Energy, MJ/kg 670
33
Embodied Water, L/kg 270
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
90 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
480 to 4550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 43 to 61
28 to 62
Strength to Weight: Bending, points 39 to 49
24 to 41
Thermal Diffusivity, mm2/s 3.4
8.1
Thermal Shock Resistance, points 47 to 67
27 to 60

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0.48 to 0.6
Chromium (Cr), % 0
13 to 15
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
81.4 to 86
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 0.8
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0 to 0.15
Residuals, % 0 to 0.4
0

Comparable Variants