MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. EN 1.4424 Stainless Steel

Grade 18 titanium belongs to the titanium alloys classification, while EN 1.4424 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is EN 1.4424 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
28
Fatigue Strength, MPa 330 to 480
350 to 370
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
78
Shear Strength, MPa 420 to 590
520
Tensile Strength: Ultimate (UTS), MPa 690 to 980
800
Tensile Strength: Yield (Proof), MPa 540 to 810
480 to 500

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 330
960
Melting Completion (Liquidus), °C 1640
1430
Melting Onset (Solidus), °C 1590
1390
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.3
13
Thermal Expansion, µm/m-K 9.9
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 41
3.4
Embodied Energy, MJ/kg 670
46
Embodied Water, L/kg 270
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
580 to 640
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 43 to 61
29
Strength to Weight: Bending, points 39 to 49
25
Thermal Diffusivity, mm2/s 3.4
3.5
Thermal Shock Resistance, points 47 to 67
23

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
18 to 19
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
68.6 to 72.4
Manganese (Mn), % 0
1.2 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
4.5 to 5.2
Nitrogen (N), % 0 to 0.030
0.050 to 0.1
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
1.4 to 2.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0