MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. CC764S Brass

Grade 18 titanium belongs to the titanium alloys classification, while CC764S brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is CC764S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11 to 17
15
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 690 to 980
680
Tensile Strength: Yield (Proof), MPa 540 to 810
290

Thermal Properties

Latent Heat of Fusion, J/g 410
180
Maximum Temperature: Mechanical, °C 330
130
Melting Completion (Liquidus), °C 1640
850
Melting Onset (Solidus), °C 1590
810
Specific Heat Capacity, J/kg-K 550
400
Thermal Conductivity, W/m-K 8.3
94
Thermal Expansion, µm/m-K 9.9
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
36

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 41
2.9
Embodied Energy, MJ/kg 670
49
Embodied Water, L/kg 270
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
80
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
390
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 43 to 61
24
Strength to Weight: Bending, points 39 to 49
22
Thermal Diffusivity, mm2/s 3.4
30
Thermal Shock Resistance, points 47 to 67
22

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
1.0 to 3.0
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
52 to 66
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0.5 to 2.5
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0
0.3 to 4.0
Nickel (Ni), % 0
0 to 3.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
20.7 to 50.2
Residuals, % 0 to 0.4
0