MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. Nickel 625

Grade 18 titanium belongs to the titanium alloys classification, while nickel 625 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is nickel 625.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
33 to 34
Fatigue Strength, MPa 330 to 480
240 to 320
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
79
Shear Strength, MPa 420 to 590
530 to 600
Tensile Strength: Ultimate (UTS), MPa 690 to 980
790 to 910
Tensile Strength: Yield (Proof), MPa 540 to 810
320 to 450

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 330
980
Melting Completion (Liquidus), °C 1640
1350
Melting Onset (Solidus), °C 1590
1290
Specific Heat Capacity, J/kg-K 550
440
Thermal Conductivity, W/m-K 8.3
11
Thermal Expansion, µm/m-K 9.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.4

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.6
Embodied Carbon, kg CO2/kg material 41
14
Embodied Energy, MJ/kg 670
190
Embodied Water, L/kg 270
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
220 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
260 to 490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 43 to 61
26 to 29
Strength to Weight: Bending, points 39 to 49
22 to 24
Thermal Diffusivity, mm2/s 3.4
2.9
Thermal Shock Resistance, points 47 to 67
22 to 25

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0 to 0.4
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 5.0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
58 to 68.9
Niobium (Nb), % 0
3.2 to 4.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 92.5 to 95.5
0 to 0.4
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0

Comparable Variants