MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. C17465 Copper

Grade 18 titanium belongs to the titanium alloys classification, while C17465 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is C17465 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11 to 17
5.3 to 36
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
44
Shear Strength, MPa 420 to 590
210 to 540
Tensile Strength: Ultimate (UTS), MPa 690 to 980
310 to 930
Tensile Strength: Yield (Proof), MPa 540 to 810
120 to 830

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 330
210
Melting Completion (Liquidus), °C 1640
1080
Melting Onset (Solidus), °C 1590
1030
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 8.3
220
Thermal Expansion, µm/m-K 9.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
22 to 51
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
23 to 52

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 41
4.1
Embodied Energy, MJ/kg 670
64
Embodied Water, L/kg 270
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
47 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
64 to 2920
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 43 to 61
9.7 to 29
Strength to Weight: Bending, points 39 to 49
11 to 24
Thermal Diffusivity, mm2/s 3.4
64
Thermal Shock Resistance, points 47 to 67
11 to 33

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0 to 0.2
Beryllium (Be), % 0
0.15 to 0.5
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
95.7 to 98.7
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.2
Lead (Pb), % 0
0.2 to 0.6
Nickel (Ni), % 0
1.0 to 1.4
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 0
0 to 0.25
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Zirconium (Zr), % 0
0 to 0.5
Residuals, % 0
0 to 0.5