MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. C63200 Bronze

Grade 18 titanium belongs to the titanium alloys classification, while C63200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is C63200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11 to 17
17 to 18
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
44
Shear Strength, MPa 420 to 590
390 to 440
Tensile Strength: Ultimate (UTS), MPa 690 to 980
640 to 710
Tensile Strength: Yield (Proof), MPa 540 to 810
310 to 350

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 330
230
Melting Completion (Liquidus), °C 1640
1060
Melting Onset (Solidus), °C 1590
1040
Specific Heat Capacity, J/kg-K 550
440
Thermal Conductivity, W/m-K 8.3
35
Thermal Expansion, µm/m-K 9.9
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
7.6

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.3
Embodied Carbon, kg CO2/kg material 41
3.4
Embodied Energy, MJ/kg 670
55
Embodied Water, L/kg 270
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
95 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
400 to 510
Stiffness to Weight: Axial, points 13
7.9
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 43 to 61
21 to 24
Strength to Weight: Bending, points 39 to 49
20 to 21
Thermal Diffusivity, mm2/s 3.4
9.6
Thermal Shock Resistance, points 47 to 67
22 to 24

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
8.7 to 9.5
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
78.8 to 82.6
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
3.5 to 4.3
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0
1.2 to 2.0
Nickel (Ni), % 0
4.0 to 4.8
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.1
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0
0 to 0.5