MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. N06007 Nickel

Grade 18 titanium belongs to the titanium alloys classification, while N06007 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is N06007 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
38
Fatigue Strength, MPa 330 to 480
330
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
79
Shear Strength, MPa 420 to 590
470
Tensile Strength: Ultimate (UTS), MPa 690 to 980
690
Tensile Strength: Yield (Proof), MPa 540 to 810
260

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 330
990
Melting Completion (Liquidus), °C 1640
1340
Melting Onset (Solidus), °C 1590
1260
Specific Heat Capacity, J/kg-K 550
450
Thermal Conductivity, W/m-K 8.3
10
Thermal Expansion, µm/m-K 9.9
14

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.4
Embodied Carbon, kg CO2/kg material 41
10
Embodied Energy, MJ/kg 670
140
Embodied Water, L/kg 270
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
200
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
170
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 43 to 61
23
Strength to Weight: Bending, points 39 to 49
21
Thermal Diffusivity, mm2/s 3.4
2.7
Thermal Shock Resistance, points 47 to 67
18

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0
1.5 to 2.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
18 to 21
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
5.5 to 7.5
Nickel (Ni), % 0
36.1 to 51.1
Niobium (Nb), % 0
1.8 to 2.5
Nitrogen (N), % 0 to 0.030
0.15 to 0.25
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 92.5 to 95.5
0
Tungsten (W), % 0
0 to 1.0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0