MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. S32506 Stainless Steel

Grade 18 titanium belongs to the titanium alloys classification, while S32506 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is S32506 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
21
Fatigue Strength, MPa 330 to 480
330
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
81
Shear Strength, MPa 420 to 590
440
Tensile Strength: Ultimate (UTS), MPa 690 to 980
710
Tensile Strength: Yield (Proof), MPa 540 to 810
500

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1640
1450
Melting Onset (Solidus), °C 1590
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.3
16
Thermal Expansion, µm/m-K 9.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 41
3.9
Embodied Energy, MJ/kg 670
54
Embodied Water, L/kg 270
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
620
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 43 to 61
25
Strength to Weight: Bending, points 39 to 49
23
Thermal Diffusivity, mm2/s 3.4
4.3
Thermal Shock Resistance, points 47 to 67
19

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
24 to 26
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
60.8 to 67.4
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0
5.5 to 7.2
Nitrogen (N), % 0 to 0.030
0.080 to 0.2
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.9
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 92.5 to 95.5
0
Tungsten (W), % 0
0.050 to 0.3
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0