MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. S35315 Stainless Steel

Grade 18 titanium belongs to the titanium alloys classification, while S35315 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is S35315 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
46
Fatigue Strength, MPa 330 to 480
280
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
78
Shear Strength, MPa 420 to 590
520
Tensile Strength: Ultimate (UTS), MPa 690 to 980
740
Tensile Strength: Yield (Proof), MPa 540 to 810
300

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1640
1370
Melting Onset (Solidus), °C 1590
1330
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.3
12
Thermal Expansion, µm/m-K 9.9
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.0

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 41
5.7
Embodied Energy, MJ/kg 670
81
Embodied Water, L/kg 270
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
270
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 43 to 61
26
Strength to Weight: Bending, points 39 to 49
23
Thermal Diffusivity, mm2/s 3.4
3.1
Thermal Shock Resistance, points 47 to 67
17

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.1
Chromium (Cr), % 0
24 to 26
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
33.6 to 40.6
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
34 to 36
Nitrogen (N), % 0 to 0.030
0.12 to 0.18
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.2 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0