MakeItFrom.com
Menu (ESC)

Grade 19 Titanium vs. 6360 Aluminum

Grade 19 titanium belongs to the titanium alloys classification, while 6360 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 19 titanium and the bottom bar is 6360 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
68
Elongation at Break, % 5.6 to 17
9.0 to 18
Fatigue Strength, MPa 550 to 620
31 to 67
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 47
26
Shear Strength, MPa 550 to 750
76 to 130
Tensile Strength: Ultimate (UTS), MPa 890 to 1300
120 to 220
Tensile Strength: Yield (Proof), MPa 870 to 1170
57 to 170

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 370
160
Melting Completion (Liquidus), °C 1660
640
Melting Onset (Solidus), °C 1600
630
Specific Heat Capacity, J/kg-K 520
900
Thermal Conductivity, W/m-K 6.2
210
Thermal Expansion, µm/m-K 9.1
23

Otherwise Unclassified Properties

Base Metal Price, % relative 45
9.5
Density, g/cm3 5.0
2.7
Embodied Carbon, kg CO2/kg material 47
8.3
Embodied Energy, MJ/kg 760
150
Embodied Water, L/kg 230
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 150
14 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 3040 to 5530
24 to 210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 33
50
Strength to Weight: Axial, points 49 to 72
13 to 23
Strength to Weight: Bending, points 41 to 53
20 to 30
Thermal Diffusivity, mm2/s 2.4
86
Thermal Shock Resistance, points 57 to 83
5.5 to 9.9

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
97.8 to 99.3
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 5.5 to 6.5
0 to 0.050
Copper (Cu), % 0
0 to 0.15
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
0.1 to 0.3
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0
0.020 to 0.15
Molybdenum (Mo), % 3.5 to 4.5
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Silicon (Si), % 0
0.35 to 0.8
Titanium (Ti), % 71.1 to 77
0 to 0.1
Vanadium (V), % 7.5 to 8.5
0
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0
0 to 0.15

Comparable Variants