MakeItFrom.com
Menu (ESC)

Grade 19 Titanium vs. AISI 316Cb Stainless Steel

Grade 19 titanium belongs to the titanium alloys classification, while AISI 316Cb stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 19 titanium and the bottom bar is AISI 316Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 5.6 to 17
34
Fatigue Strength, MPa 550 to 620
180
Poisson's Ratio 0.32
0.28
Reduction in Area, % 22
46
Shear Modulus, GPa 47
78
Shear Strength, MPa 550 to 750
390
Tensile Strength: Ultimate (UTS), MPa 890 to 1300
580
Tensile Strength: Yield (Proof), MPa 870 to 1170
230

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 370
940
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1600
1410
Specific Heat Capacity, J/kg-K 520
470
Thermal Conductivity, W/m-K 6.2
15
Thermal Expansion, µm/m-K 9.1
16

Otherwise Unclassified Properties

Base Metal Price, % relative 45
22
Density, g/cm3 5.0
7.9
Embodied Carbon, kg CO2/kg material 47
4.4
Embodied Energy, MJ/kg 760
61
Embodied Water, L/kg 230
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 150
160
Resilience: Unit (Modulus of Resilience), kJ/m3 3040 to 5530
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 33
25
Strength to Weight: Axial, points 49 to 72
20
Strength to Weight: Bending, points 41 to 53
20
Thermal Diffusivity, mm2/s 2.4
4.1
Thermal Shock Resistance, points 57 to 83
13

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 5.5 to 6.5
16 to 18
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
60.9 to 72
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 3.5 to 4.5
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Niobium (Nb), % 0
0 to 1.1
Nitrogen (N), % 0 to 0.030
0 to 0.1
Oxygen (O), % 0 to 0.12
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 71.1 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0