MakeItFrom.com
Menu (ESC)

Grade 19 Titanium vs. AISI 317LMN Stainless Steel

Grade 19 titanium belongs to the titanium alloys classification, while AISI 317LMN stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 19 titanium and the bottom bar is AISI 317LMN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 5.6 to 17
45
Fatigue Strength, MPa 550 to 620
250
Poisson's Ratio 0.32
0.28
Reduction in Area, % 22
56
Shear Modulus, GPa 47
79
Shear Strength, MPa 550 to 750
430
Tensile Strength: Ultimate (UTS), MPa 890 to 1300
620
Tensile Strength: Yield (Proof), MPa 870 to 1170
270

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 370
1020
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1600
1410
Specific Heat Capacity, J/kg-K 520
470
Thermal Conductivity, W/m-K 6.2
14
Thermal Expansion, µm/m-K 9.1
16

Otherwise Unclassified Properties

Base Metal Price, % relative 45
24
Density, g/cm3 5.0
8.0
Embodied Carbon, kg CO2/kg material 47
4.8
Embodied Energy, MJ/kg 760
65
Embodied Water, L/kg 230
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 150
230
Resilience: Unit (Modulus of Resilience), kJ/m3 3040 to 5530
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 33
25
Strength to Weight: Axial, points 49 to 72
22
Strength to Weight: Bending, points 41 to 53
20
Thermal Diffusivity, mm2/s 2.4
3.8
Thermal Shock Resistance, points 57 to 83
14

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0 to 0.030
Chromium (Cr), % 5.5 to 6.5
17 to 20
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
54.4 to 65.4
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 3.5 to 4.5
4.0 to 5.0
Nickel (Ni), % 0
13.5 to 17.5
Nitrogen (N), % 0 to 0.030
0.1 to 0.2
Oxygen (O), % 0 to 0.12
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 71.1 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0