MakeItFrom.com
Menu (ESC)

Grade 19 Titanium vs. EN 1.4806 Stainless Steel

Grade 19 titanium belongs to the titanium alloys classification, while EN 1.4806 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 19 titanium and the bottom bar is EN 1.4806 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.6 to 17
6.8
Fatigue Strength, MPa 550 to 620
120
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 47
75
Tensile Strength: Ultimate (UTS), MPa 890 to 1300
470
Tensile Strength: Yield (Proof), MPa 870 to 1170
250

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 370
1000
Melting Completion (Liquidus), °C 1660
1380
Melting Onset (Solidus), °C 1600
1340
Specific Heat Capacity, J/kg-K 520
480
Thermal Conductivity, W/m-K 6.2
12
Thermal Expansion, µm/m-K 9.1
15

Otherwise Unclassified Properties

Base Metal Price, % relative 45
31
Density, g/cm3 5.0
8.0
Embodied Carbon, kg CO2/kg material 47
5.4
Embodied Energy, MJ/kg 760
76
Embodied Water, L/kg 230
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 150
27
Resilience: Unit (Modulus of Resilience), kJ/m3 3040 to 5530
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 33
24
Strength to Weight: Axial, points 49 to 72
16
Strength to Weight: Bending, points 41 to 53
17
Thermal Diffusivity, mm2/s 2.4
3.1
Thermal Shock Resistance, points 57 to 83
11

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0.3 to 0.5
Chromium (Cr), % 5.5 to 6.5
16 to 18
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
40.4 to 48.7
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 3.5 to 4.5
0 to 0.5
Nickel (Ni), % 0
34 to 36
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 71.1 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0