MakeItFrom.com
Menu (ESC)

Grade 19 Titanium vs. SAE-AISI 1022 Steel

Grade 19 titanium belongs to the titanium alloys classification, while SAE-AISI 1022 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 19 titanium and the bottom bar is SAE-AISI 1022 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.6 to 17
17 to 26
Fatigue Strength, MPa 550 to 620
190 to 300
Poisson's Ratio 0.32
0.29
Reduction in Area, % 22
45 to 54
Shear Modulus, GPa 47
73
Shear Strength, MPa 550 to 750
310 to 340
Tensile Strength: Ultimate (UTS), MPa 890 to 1300
480 to 550
Tensile Strength: Yield (Proof), MPa 870 to 1170
260 to 450

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 370
400
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1600
1420
Specific Heat Capacity, J/kg-K 520
470
Thermal Conductivity, W/m-K 6.2
52
Thermal Expansion, µm/m-K 9.1
12

Otherwise Unclassified Properties

Base Metal Price, % relative 45
1.8
Density, g/cm3 5.0
7.9
Embodied Carbon, kg CO2/kg material 47
1.4
Embodied Energy, MJ/kg 760
18
Embodied Water, L/kg 230
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 150
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 3040 to 5530
190 to 530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 33
24
Strength to Weight: Axial, points 49 to 72
17 to 19
Strength to Weight: Bending, points 41 to 53
17 to 19
Thermal Diffusivity, mm2/s 2.4
14
Thermal Shock Resistance, points 57 to 83
15 to 17

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0.18 to 0.23
Chromium (Cr), % 5.5 to 6.5
0
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
98.7 to 99.12
Manganese (Mn), % 0
0.7 to 1.0
Molybdenum (Mo), % 3.5 to 4.5
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 71.1 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0

Comparable Variants