MakeItFrom.com
Menu (ESC)

Grade 19 Titanium vs. SAE-AISI 1065 Steel

Grade 19 titanium belongs to the titanium alloys classification, while SAE-AISI 1065 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 19 titanium and the bottom bar is SAE-AISI 1065 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.6 to 17
11 to 14
Fatigue Strength, MPa 550 to 620
270 to 340
Poisson's Ratio 0.32
0.29
Reduction in Area, % 22
34 to 51
Shear Modulus, GPa 47
72
Shear Strength, MPa 550 to 750
430 to 470
Tensile Strength: Ultimate (UTS), MPa 890 to 1300
710 to 780
Tensile Strength: Yield (Proof), MPa 870 to 1170
430 to 550

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 370
400
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1600
1420
Specific Heat Capacity, J/kg-K 520
470
Thermal Conductivity, W/m-K 6.2
51
Thermal Expansion, µm/m-K 9.1
11

Otherwise Unclassified Properties

Base Metal Price, % relative 45
1.8
Density, g/cm3 5.0
7.8
Embodied Carbon, kg CO2/kg material 47
1.4
Embodied Energy, MJ/kg 760
19
Embodied Water, L/kg 230
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 150
74 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 3040 to 5530
490 to 820
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 33
24
Strength to Weight: Axial, points 49 to 72
25 to 28
Strength to Weight: Bending, points 41 to 53
23 to 24
Thermal Diffusivity, mm2/s 2.4
14
Thermal Shock Resistance, points 57 to 83
25 to 27

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0.6 to 0.7
Chromium (Cr), % 5.5 to 6.5
0
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
98.3 to 98.8
Manganese (Mn), % 0
0.6 to 0.9
Molybdenum (Mo), % 3.5 to 4.5
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 71.1 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0

Comparable Variants