MakeItFrom.com
Menu (ESC)

Grade 19 Titanium vs. S30415 Stainless Steel

Grade 19 titanium belongs to the titanium alloys classification, while S30415 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 19 titanium and the bottom bar is S30415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 5.6 to 17
45
Fatigue Strength, MPa 550 to 620
300
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 47
77
Shear Strength, MPa 550 to 750
470
Tensile Strength: Ultimate (UTS), MPa 890 to 1300
670
Tensile Strength: Yield (Proof), MPa 870 to 1170
330

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 370
940
Melting Completion (Liquidus), °C 1660
1410
Melting Onset (Solidus), °C 1600
1370
Specific Heat Capacity, J/kg-K 520
480
Thermal Conductivity, W/m-K 6.2
21
Thermal Expansion, µm/m-K 9.1
17

Otherwise Unclassified Properties

Base Metal Price, % relative 45
15
Density, g/cm3 5.0
7.7
Embodied Carbon, kg CO2/kg material 47
3.1
Embodied Energy, MJ/kg 760
43
Embodied Water, L/kg 230
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 150
250
Resilience: Unit (Modulus of Resilience), kJ/m3 3040 to 5530
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 33
25
Strength to Weight: Axial, points 49 to 72
24
Strength to Weight: Bending, points 41 to 53
22
Thermal Diffusivity, mm2/s 2.4
5.6
Thermal Shock Resistance, points 57 to 83
15

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0.040 to 0.060
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 5.5 to 6.5
18 to 19
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
67.8 to 71.8
Manganese (Mn), % 0
0 to 0.8
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 0
9.0 to 10
Nitrogen (N), % 0 to 0.030
0.12 to 0.18
Oxygen (O), % 0 to 0.12
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 71.1 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0