MakeItFrom.com
Menu (ESC)

Grade 19 Titanium vs. S40945 Stainless Steel

Grade 19 titanium belongs to the titanium alloys classification, while S40945 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 19 titanium and the bottom bar is S40945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.6 to 17
25
Fatigue Strength, MPa 550 to 620
160
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 47
75
Shear Strength, MPa 550 to 750
270
Tensile Strength: Ultimate (UTS), MPa 890 to 1300
430
Tensile Strength: Yield (Proof), MPa 870 to 1170
230

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 370
710
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1600
1410
Specific Heat Capacity, J/kg-K 520
480
Thermal Conductivity, W/m-K 6.2
26
Thermal Expansion, µm/m-K 9.1
10

Otherwise Unclassified Properties

Base Metal Price, % relative 45
8.0
Density, g/cm3 5.0
7.8
Embodied Carbon, kg CO2/kg material 47
2.2
Embodied Energy, MJ/kg 760
31
Embodied Water, L/kg 230
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 150
89
Resilience: Unit (Modulus of Resilience), kJ/m3 3040 to 5530
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 33
25
Strength to Weight: Axial, points 49 to 72
15
Strength to Weight: Bending, points 41 to 53
16
Thermal Diffusivity, mm2/s 2.4
6.9
Thermal Shock Resistance, points 57 to 83
15

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0 to 0.030
Chromium (Cr), % 5.5 to 6.5
10.5 to 11.7
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
85.1 to 89.3
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.18 to 0.4
Nitrogen (N), % 0 to 0.030
0 to 0.030
Oxygen (O), % 0 to 0.12
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 71.1 to 77
0.050 to 0.2
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0