MakeItFrom.com
Menu (ESC)

Grade 19 Titanium vs. S44660 Stainless Steel

Grade 19 titanium belongs to the titanium alloys classification, while S44660 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 19 titanium and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 5.6 to 17
20
Fatigue Strength, MPa 550 to 620
330
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 47
81
Shear Strength, MPa 550 to 750
410
Tensile Strength: Ultimate (UTS), MPa 890 to 1300
660
Tensile Strength: Yield (Proof), MPa 870 to 1170
510

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 370
1100
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1600
1410
Specific Heat Capacity, J/kg-K 520
480
Thermal Conductivity, W/m-K 6.2
17
Thermal Expansion, µm/m-K 9.1
11

Otherwise Unclassified Properties

Base Metal Price, % relative 45
21
Density, g/cm3 5.0
7.7
Embodied Carbon, kg CO2/kg material 47
4.3
Embodied Energy, MJ/kg 760
61
Embodied Water, L/kg 230
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 150
120
Resilience: Unit (Modulus of Resilience), kJ/m3 3040 to 5530
640
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 33
25
Strength to Weight: Axial, points 49 to 72
24
Strength to Weight: Bending, points 41 to 53
22
Thermal Diffusivity, mm2/s 2.4
4.5
Thermal Shock Resistance, points 57 to 83
21

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0 to 0.030
Chromium (Cr), % 5.5 to 6.5
25 to 28
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
60.4 to 71
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 3.5 to 4.5
3.0 to 4.0
Nickel (Ni), % 0
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0 to 0.030
0 to 0.040
Oxygen (O), % 0 to 0.12
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 71.1 to 77
0.2 to 1.0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0