MakeItFrom.com
Menu (ESC)

Grade 2 Titanium vs. ASTM Grade LC2-1 Steel

Grade 2 titanium belongs to the titanium alloys classification, while ASTM grade LC2-1 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 2 titanium and the bottom bar is ASTM grade LC2-1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
240
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 23
20
Fatigue Strength, MPa 250
430
Poisson's Ratio 0.32
0.29
Reduction in Area, % 37
34
Shear Modulus, GPa 38
73
Tensile Strength: Ultimate (UTS), MPa 420
810
Tensile Strength: Yield (Proof), MPa 360
630

Thermal Properties

Latent Heat of Fusion, J/g 420
260
Maximum Temperature: Mechanical, °C 320
450
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 22
46
Thermal Expansion, µm/m-K 9.0
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 37
5.0
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
1.9
Embodied Energy, MJ/kg 510
25
Embodied Water, L/kg 110
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
150
Resilience: Unit (Modulus of Resilience), kJ/m3 600
1040
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 26
29
Strength to Weight: Bending, points 28
25
Thermal Diffusivity, mm2/s 8.9
12
Thermal Shock Resistance, points 32
24

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.22
Chromium (Cr), % 0
1.4 to 1.9
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
92.5 to 95.3
Manganese (Mn), % 0
0.55 to 0.75
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0
2.5 to 3.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 98.9 to 100
0
Residuals, % 0 to 0.4
0