MakeItFrom.com
Menu (ESC)

Grade 2 Titanium vs. EN 1.0214 Steel

Grade 2 titanium belongs to the titanium alloys classification, while EN 1.0214 steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 2 titanium and the bottom bar is EN 1.0214 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
97 to 130
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 23
12 to 31
Fatigue Strength, MPa 250
160 to 250
Poisson's Ratio 0.32
0.29
Reduction in Area, % 37
66 to 80
Shear Modulus, GPa 38
73
Shear Strength, MPa 270
250 to 290
Tensile Strength: Ultimate (UTS), MPa 420
330 to 460
Tensile Strength: Yield (Proof), MPa 360
210 to 360

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1470
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 22
53
Thermal Expansion, µm/m-K 9.0
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
1.8
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
1.4
Embodied Energy, MJ/kg 510
18
Embodied Water, L/kg 110
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
34 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 600
120 to 340
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 26
12 to 16
Strength to Weight: Bending, points 28
14 to 17
Thermal Diffusivity, mm2/s 8.9
14
Thermal Shock Resistance, points 32
11 to 14

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.080
0.080 to 0.12
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
99.17 to 99.6
Manganese (Mn), % 0
0.3 to 0.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 98.9 to 100
0
Residuals, % 0 to 0.4
0