MakeItFrom.com
Menu (ESC)

Grade 2 Titanium vs. EN 1.4404 Stainless Steel

Grade 2 titanium belongs to the titanium alloys classification, while EN 1.4404 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 2 titanium and the bottom bar is EN 1.4404 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
190 to 270
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
14 to 43
Fatigue Strength, MPa 250
220 to 320
Impact Strength: V-Notched Charpy, J 160
91 to 93
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 38
78
Shear Strength, MPa 270
420 to 550
Tensile Strength: Ultimate (UTS), MPa 420
600 to 900
Tensile Strength: Yield (Proof), MPa 360
240 to 570

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
950
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 22
15
Thermal Expansion, µm/m-K 9.0
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
19
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
3.8
Embodied Energy, MJ/kg 510
52
Embodied Water, L/kg 110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
110 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 600
140 to 800
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 26
21 to 32
Strength to Weight: Bending, points 28
20 to 26
Thermal Diffusivity, mm2/s 8.9
4.0
Thermal Shock Resistance, points 32
13 to 20

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
16.5 to 18.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
62.8 to 71.5
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0
10 to 13
Nitrogen (N), % 0 to 0.030
0 to 0.1
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.9 to 100
0
Residuals, % 0 to 0.4
0