MakeItFrom.com
Menu (ESC)

Grade 2 Titanium vs. EN 1.4415 Stainless Steel

Grade 2 titanium belongs to the titanium alloys classification, while EN 1.4415 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 2 titanium and the bottom bar is EN 1.4415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
17 to 20
Fatigue Strength, MPa 250
470 to 510
Impact Strength: V-Notched Charpy, J 160
91 to 110
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 38
77
Shear Strength, MPa 270
520 to 570
Tensile Strength: Ultimate (UTS), MPa 420
830 to 930
Tensile Strength: Yield (Proof), MPa 360
730 to 840

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
790
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 22
19
Thermal Expansion, µm/m-K 9.0
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 37
13
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
3.6
Embodied Energy, MJ/kg 510
51
Embodied Water, L/kg 110
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 600
1350 to 1790
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 26
29 to 33
Strength to Weight: Bending, points 28
25 to 27
Thermal Diffusivity, mm2/s 8.9
5.1
Thermal Shock Resistance, points 32
30 to 34

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
11.5 to 13.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
75.9 to 82.4
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0
4.5 to 6.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.9 to 100
0 to 0.010
Vanadium (V), % 0
0.1 to 0.5
Residuals, % 0 to 0.4
0