MakeItFrom.com
Menu (ESC)

Grade 2 Titanium vs. EN 1.5414 Steel

Grade 2 titanium belongs to the titanium alloys classification, while EN 1.5414 steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 2 titanium and the bottom bar is EN 1.5414 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
170 to 180
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 23
22
Fatigue Strength, MPa 250
250 to 270
Impact Strength: V-Notched Charpy, J 160
46
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 38
73
Shear Strength, MPa 270
350 to 370
Tensile Strength: Ultimate (UTS), MPa 420
550 to 580
Tensile Strength: Yield (Proof), MPa 360
350 to 380

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
410
Melting Completion (Liquidus), °C 1660
1470
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 22
44
Thermal Expansion, µm/m-K 9.0
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 37
2.6
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
1.6
Embodied Energy, MJ/kg 510
21
Embodied Water, L/kg 110
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
110
Resilience: Unit (Modulus of Resilience), kJ/m3 600
320 to 370
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 26
19 to 20
Strength to Weight: Bending, points 28
19 to 20
Thermal Diffusivity, mm2/s 8.9
12
Thermal Shock Resistance, points 32
16 to 17

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
96.4 to 98.7
Manganese (Mn), % 0
0.9 to 1.5
Molybdenum (Mo), % 0
0.45 to 0.6
Nickel (Ni), % 0
0 to 0.3
Nitrogen (N), % 0 to 0.030
0 to 0.012
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 98.9 to 100
0
Residuals, % 0 to 0.4
0