MakeItFrom.com
Menu (ESC)

Grade 2 Titanium vs. Grade 32 Titanium

Both grade 2 titanium and grade 32 titanium are titanium alloys. Both are furnished in the annealed condition. They have a moderately high 91% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 2 titanium and the bottom bar is grade 32 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 23
11
Fatigue Strength, MPa 250
390
Poisson's Ratio 0.32
0.32
Reduction in Area, % 37
28
Shear Modulus, GPa 38
40
Shear Strength, MPa 270
460
Tensile Strength: Ultimate (UTS), MPa 420
770
Tensile Strength: Yield (Proof), MPa 360
670

Thermal Properties

Latent Heat of Fusion, J/g 420
410
Maximum Temperature: Mechanical, °C 320
310
Melting Completion (Liquidus), °C 1660
1610
Melting Onset (Solidus), °C 1610
1560
Specific Heat Capacity, J/kg-K 540
550
Thermal Conductivity, W/m-K 22
7.5
Thermal Expansion, µm/m-K 9.0
8.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 37
38
Density, g/cm3 4.5
4.5
Embodied Carbon, kg CO2/kg material 31
32
Embodied Energy, MJ/kg 510
530
Embodied Water, L/kg 110
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
83
Resilience: Unit (Modulus of Resilience), kJ/m3 600
2100
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
35
Strength to Weight: Axial, points 26
47
Strength to Weight: Bending, points 28
41
Thermal Diffusivity, mm2/s 8.9
3.0
Thermal Shock Resistance, points 32
63

Alloy Composition

Aluminum (Al), % 0
4.5 to 5.5
Carbon (C), % 0 to 0.080
0 to 0.080
Hydrogen (H), % 0 to 0.015
0 to 0.015
Iron (Fe), % 0 to 0.3
0 to 0.25
Molybdenum (Mo), % 0
0.6 to 1.2
Nitrogen (N), % 0 to 0.030
0 to 0.030
Oxygen (O), % 0 to 0.25
0 to 0.11
Silicon (Si), % 0
0.060 to 0.14
Tin (Sn), % 0
0.6 to 1.4
Titanium (Ti), % 98.9 to 100
88.1 to 93
Vanadium (V), % 0
0.6 to 1.4
Zirconium (Zr), % 0
0.6 to 1.4
Residuals, % 0
0 to 0.4