MakeItFrom.com
Menu (ESC)

Grade 2 Titanium vs. C69300 Brass

Grade 2 titanium belongs to the titanium alloys classification, while C69300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 2 titanium and the bottom bar is C69300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 23
8.5 to 15
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 38
41
Shear Strength, MPa 270
330 to 370
Tensile Strength: Ultimate (UTS), MPa 420
550 to 630
Tensile Strength: Yield (Proof), MPa 360
300 to 390

Thermal Properties

Latent Heat of Fusion, J/g 420
240
Maximum Temperature: Mechanical, °C 320
160
Melting Completion (Liquidus), °C 1660
880
Melting Onset (Solidus), °C 1610
860
Specific Heat Capacity, J/kg-K 540
400
Thermal Conductivity, W/m-K 22
38
Thermal Expansion, µm/m-K 9.0
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 37
26
Density, g/cm3 4.5
8.2
Embodied Carbon, kg CO2/kg material 31
2.7
Embodied Energy, MJ/kg 510
45
Embodied Water, L/kg 110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
47 to 70
Resilience: Unit (Modulus of Resilience), kJ/m3 600
400 to 700
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 26
19 to 21
Strength to Weight: Bending, points 28
18 to 20
Thermal Diffusivity, mm2/s 8.9
12
Thermal Shock Resistance, points 32
19 to 22

Alloy Composition

Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
73 to 77
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.1
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0.040 to 0.15
Silicon (Si), % 0
2.7 to 3.4
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 98.9 to 100
0
Zinc (Zn), % 0
18.4 to 24.3
Residuals, % 0
0 to 0.5