MakeItFrom.com
Menu (ESC)

Grade 2 Titanium vs. S42030 Stainless Steel

Grade 2 titanium belongs to the titanium alloys classification, while S42030 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 2 titanium and the bottom bar is S42030 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
16
Fatigue Strength, MPa 250
250
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 38
76
Shear Strength, MPa 270
410
Tensile Strength: Ultimate (UTS), MPa 420
670
Tensile Strength: Yield (Proof), MPa 360
410

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
780
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 22
28
Thermal Expansion, µm/m-K 9.0
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 37
10
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
2.5
Embodied Energy, MJ/kg 510
34
Embodied Water, L/kg 110
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
92
Resilience: Unit (Modulus of Resilience), kJ/m3 600
440
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 28
22
Thermal Diffusivity, mm2/s 8.9
7.7
Thermal Shock Resistance, points 32
24

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.3
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 0
2.0 to 3.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
77.6 to 85
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.0 to 3.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.9 to 100
0
Residuals, % 0 to 0.4
0