MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. EN 1.4835 Stainless Steel

Grade 20 titanium belongs to the titanium alloys classification, while EN 1.4835 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is EN 1.4835 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 5.7 to 17
43
Fatigue Strength, MPa 550 to 630
310
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 47
77
Shear Strength, MPa 560 to 740
520
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
750
Tensile Strength: Yield (Proof), MPa 850 to 1190
350

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 370
1150
Melting Completion (Liquidus), °C 1660
1400
Melting Onset (Solidus), °C 1600
1360
Specific Heat Capacity, J/kg-K 520
490
Thermal Expansion, µm/m-K 9.6
17

Otherwise Unclassified Properties

Density, g/cm3 5.0
7.7
Embodied Carbon, kg CO2/kg material 52
3.3
Embodied Energy, MJ/kg 860
47
Embodied Water, L/kg 350
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
270
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 33
25
Strength to Weight: Axial, points 50 to 70
27
Strength to Weight: Bending, points 41 to 52
24
Thermal Shock Resistance, points 55 to 77
16

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 5.5 to 6.5
20 to 22
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
62 to 68.4
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 0
10 to 12
Nitrogen (N), % 0 to 0.030
0.12 to 0.2
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
1.4 to 2.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 71 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0