MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. EN 2.4952 Nickel

Grade 20 titanium belongs to the titanium alloys classification, while EN 2.4952 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is EN 2.4952 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.7 to 17
17
Fatigue Strength, MPa 550 to 630
370
Poisson's Ratio 0.32
0.29
Reduction in Area, % 23
14
Shear Modulus, GPa 47
74
Shear Strength, MPa 560 to 740
700
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
1150
Tensile Strength: Yield (Proof), MPa 850 to 1190
670

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 370
980
Melting Completion (Liquidus), °C 1660
1350
Melting Onset (Solidus), °C 1600
1300
Specific Heat Capacity, J/kg-K 520
470
Thermal Expansion, µm/m-K 9.6
13

Otherwise Unclassified Properties

Density, g/cm3 5.0
8.3
Embodied Carbon, kg CO2/kg material 52
9.8
Embodied Energy, MJ/kg 860
140
Embodied Water, L/kg 350
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
170
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
1180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 33
23
Strength to Weight: Axial, points 50 to 70
38
Strength to Weight: Bending, points 41 to 52
29
Thermal Shock Resistance, points 55 to 77
33

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
1.0 to 1.8
Boron (B), % 0
0 to 0.0080
Carbon (C), % 0 to 0.050
0.040 to 0.1
Chromium (Cr), % 5.5 to 6.5
18 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
0 to 1.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 0
65 to 79.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 71 to 77
1.8 to 2.7
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0