MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. Sintered 6061 Aluminum

Grade 20 titanium belongs to the titanium alloys classification, while sintered 6061 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is sintered 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
68
Elongation at Break, % 5.7 to 17
0.5 to 6.0
Fatigue Strength, MPa 550 to 630
32 to 62
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 47
25
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
83 to 210
Tensile Strength: Yield (Proof), MPa 850 to 1190
62 to 190

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 370
170
Melting Completion (Liquidus), °C 1660
640
Melting Onset (Solidus), °C 1600
610
Specific Heat Capacity, J/kg-K 520
900
Thermal Expansion, µm/m-K 9.6
23

Otherwise Unclassified Properties

Density, g/cm3 5.0
2.7
Embodied Carbon, kg CO2/kg material 52
8.3
Embodied Energy, MJ/kg 860
150
Embodied Water, L/kg 350
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
0.68 to 7.0
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
28 to 280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 33
51
Strength to Weight: Axial, points 50 to 70
8.6 to 21
Strength to Weight: Bending, points 41 to 52
16 to 29
Thermal Shock Resistance, points 55 to 77
3.8 to 9.4

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
96 to 99.4
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 5.5 to 6.5
0
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
0
Magnesium (Mg), % 0
0.4 to 1.2
Molybdenum (Mo), % 3.5 to 4.5
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0.2 to 0.8
Titanium (Ti), % 71 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0
0 to 1.5

Comparable Variants