MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. C19700 Copper

Grade 20 titanium belongs to the titanium alloys classification, while C19700 copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 5.7 to 17
2.4 to 13
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 47
43
Shear Strength, MPa 560 to 740
240 to 300
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
400 to 530
Tensile Strength: Yield (Proof), MPa 850 to 1190
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 370
200
Melting Completion (Liquidus), °C 1660
1090
Melting Onset (Solidus), °C 1600
1040
Specific Heat Capacity, J/kg-K 520
390
Thermal Expansion, µm/m-K 9.6
17

Otherwise Unclassified Properties

Density, g/cm3 5.0
8.9
Embodied Carbon, kg CO2/kg material 52
2.6
Embodied Energy, MJ/kg 860
41
Embodied Water, L/kg 350
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
460 to 1160
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 33
18
Strength to Weight: Axial, points 50 to 70
12 to 16
Strength to Weight: Bending, points 41 to 52
14 to 16
Thermal Shock Resistance, points 55 to 77
14 to 19

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 5.5 to 6.5
0
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0
97.4 to 99.59
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0
0 to 0.050
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0.1 to 0.4
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 71 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0
0 to 0.2

Comparable Variants