MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. C69430 Brass

Grade 20 titanium belongs to the titanium alloys classification, while C69430 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is C69430 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 5.7 to 17
17
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 47
42
Shear Strength, MPa 560 to 740
350
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
570
Tensile Strength: Yield (Proof), MPa 850 to 1190
280

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 370
170
Melting Completion (Liquidus), °C 1660
920
Melting Onset (Solidus), °C 1600
820
Specific Heat Capacity, J/kg-K 520
410
Thermal Expansion, µm/m-K 9.6
18

Otherwise Unclassified Properties

Density, g/cm3 5.0
8.3
Embodied Carbon, kg CO2/kg material 52
2.7
Embodied Energy, MJ/kg 860
44
Embodied Water, L/kg 350
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
80
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
340
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 33
19
Strength to Weight: Axial, points 50 to 70
19
Strength to Weight: Bending, points 41 to 52
18
Thermal Shock Resistance, points 55 to 77
20

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
0
Arsenic (As), % 0
0.030 to 0.060
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 5.5 to 6.5
0
Copper (Cu), % 0
80 to 83
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Molybdenum (Mo), % 3.5 to 4.5
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
3.5 to 4.5
Titanium (Ti), % 71 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zinc (Zn), % 0
11.4 to 16.5
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0
0 to 0.5